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Numerical and asymptotic solutions for the thermal wall jet 
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Abstract. This paper considers the evolution of the velocity and temperature fields within a jet of fluid on a 
thermally insulated wall. Numerical solutions are obtained for a range of Prandtl numbers and for a class of initial 
velocity and temperature profiles relevant to intrusion jets observed in certain thermal cavity flows. Numerical 
results are compared with asymptotic solutions which describe the initial structure of the jet and its subsequent 
diffusion at large distances downstream. 

I.  Introduct ion  

The  development  of a two-dimensional jet flow along a rigid wall was considered theoretically 
by Glauer t  [1]. Using a boundary-layer approximation he showed that the jet would satisfy 
an integral proper ty  equivalent to conservation of the flux of momentum flux and established 
the similarity form into which the jet would evolve downstream. This showed that the width 
of the jet  grows like X . 3 / 4  and that its speed decreases like x *-I/2 where x* is the 
downstream co-ordinate. Such wall jets occur in a variety of situations, in some cases with an 
associated thermal field which is also of interest. 

One example is in the area of thermally-driven cavity flows, which are widely studied in 
connect ion with crystal-growth processes (Hurle [2]), cooling systems (Boyack and Kearney 
[3]), solar-energy collectors (Bejan and Rossie [4]) and a variety of geophysical phenomena.  
In shallow, laterally-heated cavities where natural convection is generated by maintaining the 
end-walls at different constant temperatures (Cormack,  Leal and Imberger  [5], Daniels, 
Blythe and Simpkins [6]) the flow consists primarily of upward motion near the hot end-wall 
and downward motion near the cold end-wall, the main single-cell circulation being 
completed across the central region by a two-way flow parallel to the horizontal boundaries. 
At  high Rayleigh numbers the vertical motion near the end-walls is compressed into thin 
boundary  layers which transport fluid to the base of the cold wall and the top of the hot wall 
and from there it issues into the central region in the form of 'intrusion' jets. These have 
been studied experimentally by Bejan,  A1-Homoud and Imberger [7] and Simpkins and 
Chen [8] and more recently transient features of the motion have been investigated by 
Schladow, Patterson and Street [9] and Patterson and Armfield [10]. One model of the 
steady-state end-region flow (Daniels, Blythe and Simpkins [11]) suggests that in very long 
cavities the motion in these intrusion jets is initially unaffected by the thermal field, being 
generated by the mass-flux conveyed in the vertical boundary layers. The thermal field itself 
is generated by the non-uniformity in temperature  within the vertical boundary layer, where 
the solution can be approximated by the well-known similarity form for a heated vertical 
plate (Pohlhausen [12], Squire, see Goldstein [13]). This leads to the development  of the 
horizontal intrusions with initial velocity and temperature profiles that correspond to a 
stably-stratified jet  flow. These profiles are Prandtl-number dependent ,  being obtained from 
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the similarity solution of the vertical boundary-layer equations. It is not proposed to consider 
here  the precise manner  in which the jet flow turns the corner of the cavity, which is a 
problem of some complexity. Possible mechanisms for separation ahead of the corner and a 
related eddy-structure have been advanced by Smith and Duck [14]. 

The plan of the paper is as follows. In Section 2 the governing equations and boundary 
conditions are described and these lead to an integral property of the velocity field first 
established in [1] and a corresponding result for the temperature field. In Section 3 
asymptotic results are described for small and large values of the non-dimensional down- 
stream co-ordinate x. At small values of x a lack of smoothness between the initial profiles 
and the wall conditions gives rise to singular expansions and the temperature  field, in 
particular, undergoes rapid adjustment in an inner region adjacent to the thermally-insulated 
wall. At  large values of x the similarity form for the velocity field obtained in [1] is extended 
to yield a corresponding result for the temperature field, confirming that the temperature 
across the jet becomes uniform as x - - -~ .  Numerical computations of the velocity and 
tempera ture  fields in the jet are described in Section 4. These use a sophisticated finite- 
difference scheme based on the asymptotic structure of the solution and results are obtained 
for a wide range of Prandtl numbers. A summary and discussion of the results is given in 
Section 5. 

2 .  F o r m u l a t i o n  

A two-dimensional thermal jet flow occurs along a rigid, thermally insulated plane z * =  0 
and is generated at x* = 0 by velocity and temperature profiles u* and T* varying on a length 
scale z* = h and of magnitude U and AT* respectively. Assuming that the Reynolds number 
Re = Uh/v  is large, where v is the kinematic viscosity of the fluid, and that effects of 
compressibility and buoyancy may be neglected, the Navier-Stokes and thermal energy 
equations reduce to the non-dimensional form 

Ou Ow 
- -  + - -  = O ,  ( 1 )  
Ox Oz 

Ou Ou 02u 
U - ~ x + W  Oz Oz 2 '  (2) 

0 T OT 1 02T 
U ~ x  + w  Oz ~ Oz 2 . (3) 

Here  (x*, z*) = h(Re  x, z), (u*, w*) = U(u, Re- lw) ,  T* = A T * T  and 

= vlK (4) 

is the Prandtl number  of the fluid, where r is the thermal diffusivity. A stream function qJ is 
introduced,  with 

oq, o~, 
u -  O z  ' w -  o x  (5) 

At the wall the boundary conditions are 



OT 
u = w =  Oz 0 (z 0 ) ,  

while at the edge of the jet it is required that 
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(6) 

u--->0, T--->I (z--->~), (7) 

assuming A T* to be taken as the ambient temperature. As explained in the Introduction, the 
initial profiles at x = 0 are to be provided by the solution 

=Fo(z), T=ao(z) (8) 

of the vertical boundary-layer system 

m _3 i t ?  ~ , t ,  ! i~ '  t 2 Fo + 4 "  0 - - 0  - -  2 ' t O  + O'-1 (  1 --  Go) = 0 ,  (9) 

,'t 3 t _ _  G O + ao'FoG o - O, (10) 

F o = F ~ = G o = O  ( z = 0 ) ,  F~--->0, Go-->1 (z--->oo), (11) 

(see [11]-[13]). Numerical solutions of this system were first obtained by Ostrach [15] and 
here a finite-difference Newton iteration was used to obtain profiles F 0 and G O for a range of 
Prandtl numbers. Details of the scheme are given by Gargaro [16]. Solutions are shown in 
Figs 1-2 and at large Prandtl numbers the results compare well with the asymptotic analysis 
of Kuiken [17]. As z - + 0  the profiles F 0 and G O have the forms 

1 3 24~ Z4 F o = a Z 2 - ~  z + + . . . ,  (12) 

0.8 

0.4 

5 I0 15 
7 "  

Fig. 1. Initial velocity profile for Prandtl numbers: (a) 0.028; (b) 0.1; (c) 0.72; (d) 8.1; (e) 17.2. 
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Fig. 2. Initial temperature profile for Prandtl numbers: (a) 0.028; (b) 0.1; (c) 0.72; (d) 8.1; (e) 17.2. 

G O = / 3 z -  ~o'a/3z 4 + . ' . ,  (13) 

and values of the coefficients a and fl are given in Table 1. 
The system (1 ) - (8 )  possesses two integral properties,  the first of which was derived in [1] 

and expresses the fact that the flux of momentum flux is constant at any cross-section of the 
jet: 

fo ~ u(f~ ~ u 2 d z )  d z = P ,  (14) 

where P is a constant which can be determined from the initial velocity profile by 
substitution of (8) into (14). Since no heat can escape through the wall or at the edge of the 
jet  the heat flux is also constant at any cross-section of the jet: 

f~  OT qJ -~z dz = Q ,  (15) 

where Q is a constant which can be determined from the initial profiles (8). Values of P and 
Q are given in Table 1 for a range of Prandtl numbers. 

Table 1. Properties of initial profiles 

o- a /3 P Q 

0.1 3.416 0.289 39.63 3.858 
0.72 0.612 0.387 0.6487 0.7t7 
8.1 0.065 0.461 0.0043 0.076 

17.2 0.031 0.478 0.0009 0.037 
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3. Asymptotic solutions 

In this section solutions of (1)-(8) are considered for small and large values of the 
streamwise co-ordinate x. Although the initial velocity profile (8) is consistent with the wall 
conditions (6) the velocity field is not regular at x = 0. This is because the initial profile F 0 
generated by thermal effects within the vertical boundary layer has the property that 
F'~'(0) ~ 0 and this is inconsistent with the isothermal jet equation (2) which implies that 
03Ill/OZ 3 "~ 0 at z = 0 for all values of x. This leads to an expansion for the velocity field as 
x--+ 0+ consisting of an outer region where 

I11 = Fo(Z ) ~- x2/3FI(Z) o l - ' " ,  (16) 

and an inner viscous region where 

q, = x2/3f0(rl) + xfl(rl)  + ' " ,  (17) 

and rl = z / x  1/3. Substitution of (17) into (1) gives, at leading order, 

_2e ¢, ,_ 1¢,2 = 0  (18) f~t_~ 3JOJ0 3 J 0  ' 

and this is to be solved subject to the conditions 

f 0 = f ; = 0  ( r l = 0 ) ,  f o ~ a r l  a 07--+~), (19) 

obtained from (6) and from matching with the small-z expansion of the outer form (16) 
provided by (12). The required solution is 

f0 = a'02 (20) 

At  second order fl is found to satisfy the equation 

f'~' + 2 o~rt2f'~ - 2arl f ;  + 2af ,  = 0 ,  (21) 

with boundary conditions 

fl = f'a = 0 07 = 0) ,  fa ~ -r/3/6o~ (r/--+ ~) .  (22) 

The solution is given by 

ZI(T]) = (2oto')-lJ~(~) , r 1 = ( 2 a ) - ' / 3 ~ ,  (23) 

where 

J~l = 1 - 1~3  .-t.- ( I ' ( 0 ) ~ -  I (~)) / I (0)  (24) 

and 

f(( I ( ~ )  = ~ U "1- ~-~ (3  -1- U3) 2 e do d u .  ( 2 5 )  



498 P.G. Daniels and R.J.  Gargaro 

A solution was also obtained by direct numerical integration using a Runge-Kut t a  scheme 
and is shown in Fig. 3. As r/---~oo, 

1 3 
f~ 60- r/ + at / ,  (26) 

where a = - 1 . 4 3 / 0 - ( 2 a )  2/3. The linear term in r t produces a reaction in the outer region 
where the term Fx(z ) must now vanish as z---~0 and satisfy F~(0)= a. Substitution of (16) 
into (2) shows that F 1 is proportional to F~ and so the required solution is 

F 1 = aF~/2a.  (27) 

The temperature  field adopts a similar double structure as x---~ 0 except that the discon- 
tinuity in wall heat transfer leads to a more severe non-uniformity. In the outer region 

T =  Go(z ) + x2/3Ga(z) + . . .  (x---~0+), (28) 

while in the inner region 

T =  x1/3go(rl) + xZ/3gl(rl)  + ' ' "  (X----> 0 + )  . ( 2 9 )  

Substitution into (3) shows that go satisfies 

n 2 2 I go + ~ao'~7 g o -  2 a°'~Tgo = 0 (30) 

and this is to be solved subject to the conditions 

g~ = 0 07 = 0 ) ,  g0-/377 (r/---~ o~), (31) 

103 

e a 

I0 20 
7 

Fig. 3. The  funct ion fl for Prandt l  numbers :  (a) 0.028; (e) 17.2. 
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obtained from (6) and from matching with the small -z expansion of (28) provided by (13). 
The required solution is 

go = /3 • {1  - r ( -  ½,2ao"o3/9)/r(-½)} (32) 

and is shown in Fig. 4 for various values of the Prandtl number. At second order gl is found 
to satisfy 

. 2 2 t 1 , 
g,  + ~ a o n  gl  - 4 a o n g l  = ~ o - ( f lgo  - 3 L g ~ )  , (33) 

with boundary conditions 

g~ = 0  ( 7  = 0 ) ,  g l / n 2 ~ O  (77---,o0). (34) 

Solutions were obtained numerically by a Runge-Kutta scheme and are displayed in Fig. 5 
for various values of the Prandtl number. The quadratic behaviour at infinity was avoided by 
computation of two solutions from the origin which were then used in the appropriate linear 
combination, giving 

gl ~ a [ 3 / 2 a  07--~oo) . (35) 

This behaviour matches automatically with the outer solution 

G 1 = a G ~ / 2 a  , (36) 

obtained from substitution of (28) into (3). 
At large values of x the velocity field assumes the similarity form first found in [1], with 

10 

I I I 

5 10 15 '/ 

Fig. 4. The function go for Prandtl numbers: (a) 0.028; (c) 0.72; (e) 17.2. 



500 P.G. Daniels and R.J. Gargaro 
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e 
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Fig. 5. The function g~ for Prandtl numbers: (c) 0.72; (d) 8.1; (e) 17.2. 

~ ~ xl/4(J~(~ F ) (X--~ 00) , ( 3 7 )  

where ~" = z / x  3/4. Here the scalings in x are dictated by equation (2) together with the 
integral relation (14), and ~b satisfies 

(~m _}. 1 . (j~r2 ~4,~ +~ =o, 

4 ,=4 '=o (~=o), 

with 

The required solution is 

~b = (40P)l/4qb 2 , 

(38) 

~'---~0 (~ - - -~ ) ,  (39) 

= P .  (40) 

(41) 

where 0 satisfies 

Z - - 1 - x - 1 / 4 0 ( ~ )  (x----~ oo) , ( 4 3 )  

The heat-flux integral (15) now dictates that the temperature approaches its final constant 
form with an algebraic decay of order x -1/4, so that 

where 

~"l'V~fl~lt'At~D'tl/4~" ~ -  In (1 + dO + (I)2) 1/2 V~(I) 
1- -qb + ~ t a n - 1  2 + ~  " (42)  



o"+ ~ ( 6 o '  + 6'o) = o ,  

o'=o (~=o), o--,o ( ~ )  

and 

- f :  60'  d~" = Q .  

The required solution is 

0 = 00(1 - q)3)~, 

where 

Oo = Q I ' ( a  + ~ ) / {F(~)F(~ )o'(40P)' /4}. 
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(44) 

(45) 

(46) 

(47) 

(48) 

Further terms in the expansions (37) and (43) have not been investigated in detail although 
there are certainly correction terms of order x -3/4 and x -5/4 respectively, equivalent to an 
origin shift in x. 

4. Numerical solution 

A finite difference scheme was used to obtain numerical solutions of the system (1)-(8)  for a 
range of values of the Prandtl number. The system is parabolic and solutions were computed 
by a downstream marching procedure, using Newton iteration to solve the discretized form 
of the nonlinear momentum equation at each x station. In view of the initial development of 
the jet outlined in Section 3, in x < 1 the equations were discretized onto inner and outer 
meshes which conformed with the asymptotic structure as x--*0. For the inner mesh the 
solution is written as 

t~ = ~2A(sC, r/) ,  T = sCD(~:, r/), (49) 

where 

= x 1/3 , n = z/x ~/3 , (50) 

giving equations which may be expressed in first-order form as 

0 C + 2  1 B2 1 ( OB 0~)  
O---~ 3 A C - 5  - 5  ~ B - - ~ - C  = 0 ,  (51) 

1 0 E + 2  1 1 ( OD 0~)  
O-~ ~ A E - ~  DB--~  ~ B - - ~ - E  =0, (52) 

where 

OB OA OD 
C = B E = (53) 

0,1 
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together  with boundary conditions at the wall 

A = B = E = O  ( • = 0 ) .  

For  the outer  mesh the solution is expressed as 

q, = d ( ~ ,  z ) ,  T = / 5 ( ~ ,  z ) ,  

giving equations which may be expressed in first-order form as 

o z  - 3~  2 - ~  - d - ~  , 

1 O/~ 1 (/~ 0/5 0 A )  
0z - 3¢ 2 ~ - ~ ~ -  ' 

where 

(54) 

(55) 

(56) 

(57) 

t !  t . A = F  o,  / 3 = F ; ,  d = r  o, / ) = G o ,  / ~ = G  O ( ~ : = 0 ) ,  (60) 

and in the inner region 

A = O~7~ 2 , B = 2a~7 , C = 2 a ,  D = go , E = g~ (~ = 0) . (61) 

These equations and boundary conditions are now discretized using central differences and 
uniform steps A~:, At/ and Az. At a given downstream step ~ the inner mesh extends to 
~7 = "q~ while the outer mesh occupies z 0 ~< z ~< z~ where z 0 = r~=~. The step lengths are 
chosen such that the outer mesh is reduced by one step in z for each downstream step in ~, 
i.e. Az = ~% A~, in the manner  described by Smith [18]. At the common boundary of the two 

regions continuity requires 

~:2A = f t . ,  ~:B = / ~ ,  C = C ,  ~D = / 5 ,  E = E .  (62) 

Details of the discretized form of the system (51)-(54)  and (56)-(62)  and of the resulting 
matrix equation for the Newton increments associated with the momentum field at each 
downstream step are given in [16]; the solution at the previous step is used to provide an 
initial guess and convergence is required to within a specified tolerance. The linear system 
for the temperature  then requires only a single solution of the appropriate matrix equation at 
each downstream step. 

Initial profiles for the solution in the outer region are 

/3--+ 0 ,  /5--+1 (z--+ ~ ) .  (59) 

together  with outer  boundary conditions 

0/5 
= v . .  B -  E -  (58) 

Oz ' Oz ' Oz ' 
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T h e  choice  Az = At/ ensures  that  at x = 1 grid points  of  the inner  and  ou te r  meshes  are  

spaced  at equa l  intervals  in z and  a switch is m a d e  to a un i fo rm mesh  in 

1 / 4  Z/X3/4 X = x , ff = , (63) 

wi th  

qJ = x A ( x ,  ~) ,  T= 1 -  x -1D(x ,  ~).  (64) 

This  ensures  tha t  the  diffusing je t  is adequa te ly  r ep re sen ted  in the numer ica l  s cheme  at large 
va lues  of  x. Fo r  x > 1 the  sys tem of  f i rs t -order  equa t ions  

0---~ + 4 (AC + 2/~ ~ g /~ -ff-g-g - d -~X = 0 ,  (65) 

1 0 / ~ + 1  . . . .  1 ( 0/9 0 . 4 )  -S a--{ -~ (AE + B D )  - g X B ~ - E ~ - x  = 0 ,  (66)  

_ 0/~ /~ = 0A /~ = 0 / )  (67) 
0~" ' a~ ' 0~" ' 

mus t  be  solved subjec t  to the b o u n d a r y  condi t ions  

I0 

Z 

0.7 

m J  

0-4 u 0-8 

Fig. 6. Velocity profiles u for ~ = 0.72 at ~: = 0.2, 0.4, 0.6, 0.8, 1.0. 
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(68) 

B--~O, ff)---~O (~---~oo), (69) 

and initial conditions provided by the known profiles at x = 1. The system is discretized onto 
a uniform mesh in X and ~" and at each downstream step the velocity field is found first using 
Newton  iteration, allowing the tempera ture  field to be obtained from a single solution of an 
appropr ia te  matrix equation. Details of the discretized equations are given in [16]. 

Most  computat ions were carried out with step sizes A ~ = A z  = A ~ ' = 0 . 1 ,  A~:=0.02, 
2~( = 0.1, outer  boundaries r/= = 5, z~ = ~'= = 2 5  and a tolerance of 10 -4 for the Newton 
increments  at each downstream step. Several checks were made on the accuracy of the 
calculations using different step sizes and also by evaluating the conserved integrals (14) and 
(15) at each downstream step. Some of the results are summarised in Table 2. 

Comple te  downst ream integrations were per formed for several values of  the Prandtl 
number .  Figures 6 -9  show velocity and tempera ture  profiles at several locations in the jet 
and Fig. 10 shows the streamwise variation of the main propert ies  of the flow for the case of 
air (or = 0.72). The results were found to be in excellent agreement  with the asymptotic 

forms obtained in Section 3. 

10 

2~ 

~=1.0 

0.8 

0.6 

! 

1.0 
T 

Fig. 7. Temperature profiles T for o, = 0.72 at ~ = 0.2, 0.4, 0.6, 0.8, 1.0. 
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Table 2. A selection of numerical results for different step sizes (x ~< 1) and ~r = 0.72 

505 

A~q=Az=0.2 ,  A~:=0.04 

P Q T(x, 1) u(x, 1) 

0.2 0.6337 0.7112 0.3550 0.6114 
0.6 0.6339 0.6949 0.3845 0.3020 
1.0 0.6279 0.7036 0.5390 0.1053 

A ' 0 = A z = 0 . 1 ,  A~=0.02 

P a T(x, 1) u(x, 1) 

0.2 0.6490 0.7171 0.3549 0.6111 
0.6 0.6488 0.7171 0.3843 0.3024 
1.0 0.6485 0.7170 0.5385 0.1058 

20 

10 

Z 

0 . 2  

1A 

I 

0-1 

Fig. 8. Velocity profiles u for ~r =8.1 at ~=0.2 ,  0.4, 0.6, 0.8, 1.0. 
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2 0  

Z 

10 

T I-0 

Fig. 9. Temperature  profiles T for ~r = 8.1 at ~: = 0.2, 0.4, 0.6, 0.8, 1.0. 

1.2 

0-8 

0 - 4  

| | I I I i I 

?- X ~I~ 4- 
Fig. 10. Main properties of the jet for ~ = 0.72, showing (i) wall temperature T(x, 0), (ii) skin friction du/Oz(x, O) 
and (iii) stream function q,(x, 2) /10,  as functions of x t/4. Dashed curves indicate the asymptotes corresponding to 
(70)-(73).  
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The numerical results confirm the evolution of the jet into the form predicted by the 

asymptotic solution of Glauert [1] and the corresponding temperature field (43). As the jet 

proceeds downstream it entrains fluid, widens ( z - x 3 / 4 ) ,  slows down and assumes the 

uniform temperature of the ambient fluid. As x -~  ~, the wall temperature and skin friction 

are 

T(x ,  O) ~ 1 - x - 1 / 4 0 o  , (70) 

Ou (x, O) ~ x-5/4(40p)3/4/72 (71) 
Oz 

while at the edge of the jet 

w ( x , ~ ) - - - x - 3 / 4 ( 4 0 P ) l / 4 / 4  (x-->oo). (72) 

The initial evolution of the jet is characterised by a sudden adjustment of the wall 

temperature.  Heat  cannot escape through the wall or at the edge of the jet and so the 

temperature of the jet rises rapidly, with 

T(x,  O) -- xlJ313( 2a~r/9)- lJ3/F( ~ ) (x---> O) , (73) 

at the wall. In the course of the flow all of the isotherms which enter the jet at x = 0 attach to 

the wall. 

Figures 6 -9  indicate the dependence of the flow on the Prandtl number of the fluid. At  

small Prandtl numbers the temperature adjusts on a scale much wider than that of the 

velocity field, while at large Prandtl numbers the reverse is true. For air, the results show 

that the jet attains its asymptotic form within a streamwise distance x* of about 24(Uh/u)h .  
Horizontal  intrusions in shallow, thermally-driven cavity flows eventually give way to a 

second stage of evolution in which buoyancy comes into play, [11]. As the jet diffuses the 

inertial and viscous terms in the horizontal momentum equation (2) weaken relative to the 

effect of buoyancy, leading to a coupling of the thermal and velocity fields on a longer 

streamwise length scale. This second stage of evolution will be considered in future work. 

One of us (RJG)  is grateful to the Science and Engineering Research Council for support 
in the form of a Research Studentship. 
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